Parcenter.ru

Все про домашних животных
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Белки общая характеристика

Общая характеристика и функции белков;

Белки

Высшие полисахариды

Высшие полисахариды — высокомолекулярные вещества, молекулы которых содержат от нескольких десятков до многих тысяч остатков моносаха­ридов.

Высшие полисахариды делят на 2 группы — гомо- и гетерополисахариды. Молекулы гомополи-еысаридов построены из остатков одного сахара. Из остатков глюкозы состоят крахмал, целлюло­за, гликоген, каллоза, лихенин, из остатков фрук­тозы — инулин, леван. В состав молекул гетерополисахаридов входят остатки различных моносаха­ридов и их производных — гемицеллюлозы, гумми, слизи. Молекулы высших полисахаридов могут быть как линейными, так и разветвленными. Все поли­сахариды этой группы не обладают восстанавлива­ющими свойствами.

Крахмал — главный запасный полисахарид ра­стений, который откладывается в клетках запаса­ющих органов в виде крахмальных зерен (семена, плоды, корни, клубни, корневища, стебли). Осо­бенно много крахмала в семенах риса (60-80%), кукурузы (65-75%), пшеницы (60-70%), меньше в клубнях картофеля (12-22%). Крахмальные зерна не растворяются в воде, а только набухают. Если взвесь крахмальных зе­рен в воде постепенно нагревать, то может быть достигнута температура, при которой крахмал об­разует очень вязкий коллоидный раствор, называ­емый крахмальным клейстером. Температура клейстеризации различна для крахмала разных расте­ний. Крахмал картофеля клейстеризуется при тем­пературе 55-65°, кукурузы — при 64-71°, пшени­цы — при 60-80°, риса — при 70-80°.

Очень характерным свойством крахмала явля­ется его способность окрашиваться в синий цвет при добавлении раствора йода в йодистом калии.

Целлюлоза (клетчатка) — высший полисахарид, который является основным компонентом клеточ­ной оболочки, образующим ее каркас. В растениях клетчатка всегда связана с други­ми веществами — гемицеллюлозами, лигнином, пектином, липидами, смолами и т. д.

Целлюлоза нерастворима в воде, в ней она толь­ко набухает. Она является очень стойким веще­ством: не изменяется под действием слабых кислот и щелочей даже при кипячении, не растворя­ется в большинстве обычных растворителей. Гидролизуется клетчатка до глюкозы при ки­пячении с концентрированной НС1 или Н24.

Белки — важнейшие природные соединения живой клетки как растительной, так и животной.

Основные функции белков в растительном орга­низме те же, что и в животном.

1. Структурная. Белки участвуют в по­строении всех клеточных органелл.

2. Каталитическая. Все ферменты — белки.

3. Регуляторная. Например, гистоный ряд негистоновых белков регулируют транс­крипцию.

4. Механо-химическая. Белки участву­ют в осуществлении движений цитоплазмы и дру­гих клеточных органелл.

5. Транспортная. Белки-переносчики транспортируют различные вещества как через плазматическую мембрану, так и внутри клетки.

6. Защитная. Например, гидролитичес­кие ферменты лизосом и вакуолей расщепляют вредные вещества, попавшие в клетку. Кроме того, гликопротеины участвуют в защите растений от патогенов.

7. Запасная. Эта функция характерна в основном для растений. Запасные белки откладываются в семенах и используются для питания проростков в процессе прорастания.

В настоящее время функции многих белков еще не выяснены. Кроме того, один белок может вы­полнять две или более функций. Например, неко­торые белки мембран могут выполнять структур­ную и ферментативную функции.

Как правило, содержание белков в растениях ниже, чем у животных. В вегетативных органах количество белка обычно 5-15% от сухой массы. Так, в листьях тимофеевки содержится 7% белка, а в листьях клевера и вики — 15%. Больше белка в семенах: у злаков в среднем 10-20%, у бобовых и масличных — 25-35%.

Наиболее богаты белком семена сои — до 40%, а иногда и выше. В растительных клетках белки обычно связаны с углеводами, липидами и другими соединениями, а также с мембранами. Поэтому их трудно извлекать из растений и получать чистые препараты, особенно из вегетативных органов. В связи с этим в растениях лучше изучены белки семян, где их больше и откуда они легче извлекаются.

Растительные белки по своим свойствам, моле­кулярной массе и структуре молекул близки к бел­кам животного происхождения.

Мономерами белков являются аминокислоты. В составе белков как растительных, так и животных, найдено 20 аминокислот:

В растениях, кроме 20 перечисленных выше, обнаружено большое количество аминокислот (свы­ше 250), которые не входят в состав белковых мо­лекул, а содержатся только в свободном состоянии или встречаются в составе коротких пептидов. Их называют не протеиногенными. Эти аминокислоты присутствуют в растениях в небольших количествах и обычно характерны для небольшой группы рас­тений (семейство, род).

Пептиды, или полипептиды,— это цепочки из нескольких аминокислот, связанных пептидными связями. В состав пептидов могут входить не только протеиногенные, но и непротеиногенные аминокис­лоты.

Пептиды играют важную роль промежуточных продуктов в обмене веществ, и многие из них яв­ляются физиологически очень активными соеди­нениями. Пептидами являются некоторые антибио­тики (грамицидин, лихениформин), гормоны (ин­сулин, окситацин, вазопрессин), токсины (аманитины). Некоторые пептиды представляют собой замкнутую полипептидную цепочку, т. е. являются циклопептидами, а некоторые даже имеют би­циклическое строение. Среди циклопептидов есть сильно токсичные вещества. Например, ядовитый гриб бледная по­ганка (Amanita phalloides) содержит по крайней мере 10 токсичных циклопептидов — аманитинов. Все они имеют молекулярную массу около 1000.

Классификация белков

Рациональной классификации белков пока не существует, т. к. еще не изучены структура моле­кул и функции многих белков.

Все белки как животные, так и растительные, разделяют на две большие группы: простые белки и сложные. Простые белки состоят только из ами­нокислот, связанных пептидными связями, слож­ные в своем составе, кроме белковой части, имеют еще небелковый компонент — простетическую группу.

Далее простые белки классифицируют по фи­зико-химическим свойствам: растворимости в раз­личных растворителях и величине молекулярной массы, а сложные — по природе простетической группы.

Белки. Свойства белка.

Белки – природные полипептиды с огромной молекулярной массой. Они входят в состав всех живых организмов и выполняют различные биологические функции.

Строение белка.

У белков существует 4 уровня строения:

  • первичная структура белка – линейная последовательность аминокислот в полипептидной цепи, свернутых в пространстве:

  • вторичная структура белка – конформация полипептидной цепи, т.к. скручивание в пространстве за счет водородных связей между NH и СО группами. Есть 2 способа укладки: α-спираль и β— структура.

На одном витке укладываются 4 аминокислотных остатка, которые находятся снаружи спирали.

Полипептидная цепь растянута, ее участки располагаются параллельны друг другу и удерживаются водородными связями.

  • третичная структура белка – это трехмерное представление закрученной α-спираль или β-структуры в пространстве:
Читать еще:  Белка роль в природе

Эта структура образуется за счет дисульфидных мостиков –S-S- между цистеиновыми остатками. В образовании такой структуры участвуют противоположно заряженные ионы.

  • четвертичная структура белка образуется за счет взаимодействия между разными полипептидными цепями:

Синтез белка.

В основе синтеза лежит твердофазный метод, в котором первая аминокислота закрепляется на полимерном носителе, а к ней последовательно подшиваются новые аминокислоты. После полимер отделяют от полипептидной цепи.

Физические свойства белка.

Физические свойства белка определяются строением, поэтому белки делят на глобулярные (растворимые в воде) и фибриллярные (нерастворимые в воде).

Химические свойства белков.

1. Денатурация белка (разрушение вторичной и третичной структуры с сохранением первичной). Пример денатурации – свертывание яичных белков при варке яиц.

2. Гидролиз белков – необратимое разрушение первичной структуры в кислом или щелочном растворе с образованием аминокислот. Так можно установить количественный состав белков.

3. Качественные реакции:

Биуретовая реакция – взаимодействие пептидной связи и солей меди (II) в щелочном растворе. По окончанию реакции раствор окрашивается в фиолетовый цвет.

Ксантопротеиновая реакция — при реакции с азотной кислотой наблюдается желтое окрашивание.

Биологическое значение белка.

1. Белки – строительный материал, из него построены мышцы, кости, ткани.

2. Белки — рецепторы. Передают и воспринимают сигнал, поступающих от соседних клеток из окружающей среды.

3. Белки играют важную роль в иммунной системе организма.

4. Белки выполняют транспортные функции и переносят молекулы или ионы в место синтеза или накопления. (Гемоглобин переносит кислород к тканям.)

5. Белки – катализаторы – ферменты. Это очень мощные селективные катализаторы, которые ускоряют реакции в миллионы раз.

Есть ряд аминокислот, которые не могут синтезироваться в организме — незаменимые, их получают только с пищей: тизин, фенилаланин, метинин, валин, лейцин, триптофан, изолейцин, треонин.

Белковые вещества. Общая характеристика белков

Белки, или протеины (греч. протос — первый, важнейший, главный) -высокомолекулярные органические полимеры, построенные из остатков a-аминокислот. Массовая доля белков в пересчете на сухое вещество в среднем составляет в организме животных 40 — 50%, в семенах растений — 10 — 35 %.

Независимо от источников получения белки содержат при пересчете на сухое вещество (в %) углерода 50-55, кислорода 21-24, азота 15-18, водорода 6,5 — 7,3, серы 0,3 — 2,5 , фосфора 0 -2, золы 0 — 0,5.

Б е л к и — важнейшие вещества, входящие в состав живых систем. Они обладают многими свойствами и функциями, отсутствующими у других органических соединений.

С т р о и т е л ь н а я (с т р у к т у р н а я) ф у н к ц и я. Белки образуют основу цитоплазмы любой живой клетки, с липидами создают структуру всех клеточных мембран и органелл.

К а т а л и т и ч е с к а я ф у н к ц и я. Все катализаторы биохимических реакций, называемые ферментами, по своей химической природе являются белками. Эта функция белков является уникальной, не свойственной другим полимерным соединениям.

Д в и г а т е л ь н а я ф у н к ц и я. Любые формы движения в живой природе (сокращение и расслабление мышц, движение ресничек и жгутиков у простейших, движение протоплазмы в клетке и т.д.) осуществляется белковыми веществами клеток.

Т р а н с п о р т н а я ф у н к ц и я. В крови имеются белки, которые могут связывать и переносить определенные молекулы или ионы из одного органа в другой. В клеточных мембранах присутствует тип белков, способных связывать многие вещества и переносить их через мемрану.

З а щ и т н а я ф у н к ц и я. Многие белки защищают организм от вторжения других организмов или предохраняют его от повреждений. Антитела, образующиеся в организме — это специфические белки, обладающие способностью распозанавать проникшие в организм бактерии, чужеродные белки, токсины, а затем обезвреживать их. Белки, участвующие в процессе свертывания крови, предохраняют организм от потери крови при повреждении кровеносных сосудов. Токсические белки (змеиные яды, токсины бактерий, токсичные белки

растений), по-видимому, также выполняют защитные функции.

Р е г у л я т о р н а я ф у н к ц и я. Некоторые белки участвуют в регуляции обмена веществ в организме. Одни из регуляторных белков вырабатываются железами внутренней секреции животных и носят название гормонов. Каждый из белков-гормонов регулирует какую-либо из сторон обмена веществ, например, обмен глюкозы, транспорт ионов кальция и фосфора. Другие регуляторные белки, называемые репрессорами, регулируют биосинтез ферментов в бактериальных клетках. К регуляторным белкам можно отнести белковые ингибиторы ферментов.

З а п а с н а я (п и щ е в а я) ф у н к ц и я. Семена многих растений образуют запасы белков, потребляемые как питательные вещества на первых стадиях развития зародыша. Пищевые белки имеются в яйце птиц, молоке и т.д.

Перечисленные функции белков не охватывают все их многообразие. Можно указать и на другие функции белков, в частности, участие их в размножении, поддержании онкотического давления, реакциях “узнавания”, поведенческих реакциях человека и животных.

Белки — это органические соединения, в состав которых входит азот. Массовая доля азота в белке зависит от вида биологического объекта и составляет в белках животных тканей 16 %, молока (казеин) — 15,65%, зерна пшеницы, ржи, ячменя, овса — 17,54%, зерна кукурузы и грчихи — 16,67%. По содержанию азота (определяемому, как правило, методом Кьельдаля) высчитывают массовую долю белка в биологических объектах и продуктах, используя коэффициенты пересчета.

Белки. Свойства белка.

Белки – природные полипептиды с огромной молекулярной массой. Они входят в состав всех живых организмов и выполняют различные биологические функции.

Строение белка.

У белков существует 4 уровня строения:

  • первичная структура белка – линейная последовательность аминокислот в полипептидной цепи, свернутых в пространстве:
Читать еще:  Второе название белков

  • вторичная структура белка – конформация полипептидной цепи, т.к. скручивание в пространстве за счет водородных связей между NH и СО группами. Есть 2 способа укладки: α-спираль и β— структура.

На одном витке укладываются 4 аминокислотных остатка, которые находятся снаружи спирали.

Полипептидная цепь растянута, ее участки располагаются параллельны друг другу и удерживаются водородными связями.

  • третичная структура белка – это трехмерное представление закрученной α-спираль или β-структуры в пространстве:

Эта структура образуется за счет дисульфидных мостиков –S-S- между цистеиновыми остатками. В образовании такой структуры участвуют противоположно заряженные ионы.

  • четвертичная структура белка образуется за счет взаимодействия между разными полипептидными цепями:

Синтез белка.

В основе синтеза лежит твердофазный метод, в котором первая аминокислота закрепляется на полимерном носителе, а к ней последовательно подшиваются новые аминокислоты. После полимер отделяют от полипептидной цепи.

Физические свойства белка.

Физические свойства белка определяются строением, поэтому белки делят на глобулярные (растворимые в воде) и фибриллярные (нерастворимые в воде).

Химические свойства белков.

1. Денатурация белка (разрушение вторичной и третичной структуры с сохранением первичной). Пример денатурации – свертывание яичных белков при варке яиц.

2. Гидролиз белков – необратимое разрушение первичной структуры в кислом или щелочном растворе с образованием аминокислот. Так можно установить количественный состав белков.

3. Качественные реакции:

Биуретовая реакция – взаимодействие пептидной связи и солей меди (II) в щелочном растворе. По окончанию реакции раствор окрашивается в фиолетовый цвет.

Ксантопротеиновая реакция — при реакции с азотной кислотой наблюдается желтое окрашивание.

Биологическое значение белка.

1. Белки – строительный материал, из него построены мышцы, кости, ткани.

2. Белки — рецепторы. Передают и воспринимают сигнал, поступающих от соседних клеток из окружающей среды.

3. Белки играют важную роль в иммунной системе организма.

4. Белки выполняют транспортные функции и переносят молекулы или ионы в место синтеза или накопления. (Гемоглобин переносит кислород к тканям.)

5. Белки – катализаторы – ферменты. Это очень мощные селективные катализаторы, которые ускоряют реакции в миллионы раз.

Есть ряд аминокислот, которые не могут синтезироваться в организме — незаменимые, их получают только с пищей: тизин, фенилаланин, метинин, валин, лейцин, триптофан, изолейцин, треонин.

ОБЩАЯ ХАРАКТЕРИСТИКА БЕЛКОВ

Белки – это высокомолекулярные органические соединения, являющиеся сополимерами аминокислот. В природе существует примерно от 10 10 до 10 12 различных белков, составляющих основу всех видов живых организмов. Огромное многообразие белков обусловлено способностью 20 α-аминокислот взаимодействовать друг с другом с образованием полимерных соединений с молекулярной массой от 6 тысяч и до 1 миллиона (и более) дальтон. Поэтому белки отличаются длиной цепи, количеством каждой из 20-ти аминокислоты, порядком их очередности. Отсюда очевидно, что число вероятных аминокислотных последовательностей практически неисчерпаемо. Аминокислотный состав белков не одинаков и является важнейшей их характеристикой, определяется наследственной информацией, закодированной в ДНК.

Аминокислоты, входящие в состав белков, являются амфотерными электролитами, обладают свойствами как кислот, так и оснований.

Аминокислоты, входящие в состав белков, могут быть заменимыми и незаменимыми (не синтезируемыми в организме). Поэтому белки, содержащие все 8 незаменимых аминокислот, называют полноценными, лишенные (лимитированные) одной или нескольких — неполноценными. Степень полноценности зависит также от оптимального их соотношения в белке.

В связи с огромным разнообразием белков, различием их химических, физических и биологических функций классификация и номенклатура белков разработаны далеко не полностью. На сегодняшний день наиболее удачной считается классификация по структурным признакам с определенным сочетанием характерных физико-химических свойств белков.

Все белки по составу подразделяются на:

Ø простые (протеины);

Ø сложные (протеиды), в состав которых входят:

Ø глюкоза – гликопротеиды;

Ø липиды – липопротеиды;

Ø пигменты – хромопротеиды.

Ø нуклеиновые кислоты – нуклеопротеиды.

По пространственному расположению:

Ø фибриллярные (склеропротеины) – состоят из вытянутых или спирализованных полипептидных цепей, расположенных параллельно, полипептидные цепи объединены в волокна (фибриллы). Нерастворимы в воде.

Ø глобулярные (сферопротеины) – состоят из одной или нескольких полипептидных цепей, плотно свернутых за счет ковалентных и нековалентных связей в компактную частицу, называемую глобулой. Обычно хорошо растворимы в воде.

По количеству цепей в молекуле:

Ø олигомеры (больше, чем 1 цепь);

Ø протомеры (1 отдельная цепь).

Ø альбумины – в воде и разведенных солях в интервале рН = 4-8,5;

Ø глобулины – в нейтральных растворах солей сильных кислот, нерастворимы в воде;

Ø глутелины – в разведенных щелочах и кислотах (содержат 45% глутаминовой кислоты);

Ø проламины – в 50-90%м этаноле (до 45% глутаминовой кислоты и 15% пролина);

Ø гистоны – низкомолекулярные, основные, растворимые в воде и кислотах.

Все белки имеют определенную пространственную структуру, которая очень сложная, но построена по определенным закономерностям. Основными уровнями строения белковой молекулы приняты:

Ø первичная;

Ø вторичная;

Ø третичная;

Ø четвертичная.

В молекуле белка линейная последовательность размещения аминокислот строго определена, характерна только для данного вида белка и определяет его природную структуру. Эта последовательность является уникальной и называется первичной структурой. В основе образования первичной структуры лежит пептидная связь, разрушаемая только при жестком химическом, физическом или термическом воздействии.

R1 – СО – NН — R2 – СО – NН — R3 — …….- СО – NН — Rn

Вторичная структура образуется в результате взаимодействия атома водорода одной цепи и атома кислорода другой или той же самой цепи с образованием водородной связи NH…O=CH-

Из-за большого количества образовавшихся водородных связей цепь белковой молекулы скручивается в спираль. Когда образование водородной связи невозможно из-за возникновения дисульфидных связей или наличия аминокислоты пролина, образуется изгиб или петля.

Кроме спиралевидной образуется еще и складчатая вторичная структура, характерная для коллагена – фибриллярного белка. Особенностями вторичной структуры объясняется различное отношение белков к внешним воздействиям. Так, спираль разрушается легко, тогда как коллаген очень стоек.

Полипептидные цепочки в белке определенным образом группируются и фиксируются в пространстве с помощью взаимодействия белковых групп одной цепи или нескольких. Такая структура также уникальная для каждого вида белка, называется третичной. В ее образовании принимают участие:

Ø дисульфидная связь R1-S-S-R2 (между группами -SH соседних участков);

Читать еще:  Как называются белки

Ø ионная связь R1-CО;

Ø солевые мостики;

Ø эфирные связи.

Для многих белков характерна четвертичная структура – это объединение нескольких одинаковых по первичной, вторичной, третичной структуре белковых молекул. Четвертичную структуру имеет, например, гемоглобин.

Рис. 2.1. Схема структуры белка

а – вторичная, б — третичная; в — четвертичная

Каждая из перечисленных структур определяет свойства белковой молекулы. Суммарные свойства неизменного белка называется нативными свойствами.

С другой стороны, каждая из форм очень чувствительна к воздействию внешних факторов и может изменяться под их влиянием, вследствие свойства белка также изменяются.

Свойства белков

Белки, как сложные полимерные соединения, характеризуются определенными физико-химическим показателями. Это молекулярная масса, наличие определенных полярных групп, определенное значение изоэлектрической точки, оптические свойства, показатель преломления и т. д. Эти свойства проявляются в связи с тем, что белок – химическое вещество с наличием в своем составе определенных химических соединений.

Помимо физико-химических, существуют еще и функциональные свойства белка. Их оценивают как возможность белка – вещества выполнять ту или другую функцию в технологическом процессе. Под функциональными свойствами подразумевают так же физико-химические характеристики белков, определяющие их поведение при переработке в пищевые продукты и обеспечивающие определенные структуру, технологические и потребительские свойства.

Физико-химические свойства нативного белка – это его объективная характеристика, а функциональные свойства зависят от многих условий, т. е. их можно корригировать. Технологу необходимо знать, при каких условиях белок максимально проявляет свои функциональные свойства.

Существует понятие и технологические свойства – это общие свойства пищевых продуктов, которые реализуются в технологическом процессе. Так как практически все продукты питания состоят из нескольких пищевых веществ, то технологические свойства этих продуктов проявляются как функциональные свойства их составных частей.

В технологическом плане многие продукты используются с учетом того, что их технологические свойства объясняются присутствием белка как носителя функциональных свойств. Существует много функциональных свойств, желательных в белоксодержащих продуктах. Для наглядности приведем примеры некоторых функциональных свойств, необходимых или желательных в производстве тех или иных продуктов.

Растворимость – используется для достижения необходимой консистенции, создания коллоидной системы (например, напитки).

Водоудерживающая способность – используется при приготовлении рубленых мясных и рыбных фаршей, замесе теста.

Эмульгирующая способность – используется при приготовлении соусов эмульсионного типа (майонезы), рубленых мясных изделий, колбас.

Пенообразующая способность – используется в изделиях с пенной структурой (бисквитное тесто, кремы, муссы, самбуки, мороженое и т. д.).

Когезионная способность – проявляется при замесе различных видов теста, приготовлении фаршевых изделий, использовании панировки.

Текстурность – (способность расслаиваться, крошиться и т. д.) – используется при приготовлении песочного, слоеного тесто, текстурированных продуктов, хлебобулочных изделий.

Студнеобразующая способность — используется при приготовлении студней, джемов, желе, колбасных изделий.

Функциональные свойства определяются природой белка и характером взаимодействия с другими компонентами пищевой системы.

Функциональные свойства зависят от структуры и состояния белка и могут корригироваться параметрами технологического процесса.

Функциональные свойства обуславливаются поверхностными характеристиками белка на уровне первичной структуры, соотношением межмолекулярных и внутримолекулярных связей различных типов, аминокислотной последовательности, вторичной и третичной структурой, определяющими пространственную доступность.

Белки как молекулы. Состав, структура и функции белков. Урок 10

Белки выполняют ведущую роль в жизни организмов, преобладая в них и количественно. В теле животных они составляют 40-50% сухой массы, в растениях – 20-35%. Это самая разнообразная группа молекул – как химически, так и функционально. Состав и структура белков определяет огромное разнообразие их функций в клетке: их так много, что невозможно перечислить и описать их все. Однако можно сгруппировать эти функции в следующие восемь категорий. Но этот список также будет неполным.

    1. Ферментативная (каталитическая). Ферменты имеют белковое происхождение. Это трёхмерные глобулярные (свёрнутые) белки, плотно прилегающие к молекуле для её расщепления или сборки. Такая подгонка ускоряет специфические химические реакции в клетке.
    2. Защитная. Другие глобулярные белки используют свою форму для распознавания чужеродных микроорганизмов и раковых клеток. Эти приёмные устройства формируются эндокринной и иммунной системами. Многие живые организмы выделяют белки, ядовитые для других. Токсины синтезируют ряд животных, грибов, растений, микроорганизмов. В свою очередь, некоторые организмы способны вырабатывать антитоксины, которые подавляют действие этих ядов.
    3. Транспортная. Глобулярные белки присоединяют и транспортируют мелкие молекулы и ионы. Например, транспортный белок гемоглобин переносит кислород и углекислоту с потоком крови. Мембранные транспортные белки помогают молекулам и ионам двигаться через плазмалемму. Альбумины крови транспортируют жирные кислоты, глобулины – ионы металлов и гормоны.
    4. Структурная. Белковые молекулы входят в состав всех клеточных мембран и органоидов. Из белков построены элементы цитоскелета, сократительные структуры мышечных волокон. Структурными являются кератин в волосах, фибрин в сгустках крови, коллагенв коже, связках, сухожилиях и костях. В состав связок, стенок артерий и лёгких входит также структурный белок эластин.
    5. Двигательная. Сократительные белки обеспечивают способность клеток, тканей, органов и целых организмов изменять форму, двигаться. Мышцы сокращаются за счёт движения двух видов белковых нитей: актина и миозина. Контрактильные (лат. contraho, contractum – стягивать, сокращать) протеины играют ключевую роль в цитоскелете и передвижении веществ внутри клетки. Белок тубулин также входит в состав микротрубочек веретена деления, ресничек и жгутиков эукариотических клеток.
    6. Регуляторная. Крошечные белки, называемые гормонами, служат межклеточными посланниками в теле животных. Другие белки регулируют синтез РНК на ДНК, включая и выключая гены. Кроме того белки получают информацию, действуя в качестве рецепторов клеточной поверхности (эту функцию иногда считают отдельной, называя рецепторной).
    7. Запасающая. Кальций и железо хранятся в организме в виде ионов, связанных с белками хранения. В семенах растений запасаются резервные белки, которые используются зародышем при прорастании, а затем и проростком как источник азота.

  1. Энергетическая. После расщепления до аминокислот белки могут служить источником энергии в клетке. При полном окислении 1 г белка выделяется 17,6 кДж энергии. Однако белки расходуются на энергетические нужды лишь в крайних случаях, когда исчерпаны запасы углеводов и липидов.

Сравнительный размер молекул белков. Слева направо: антитело (IgG) (150 кДа), гемоглобин (66,8 кДа), гормон инсулин, фермент аденилаткиназа и фермент глютаминсинтетаза.
Автор: en:User:Gareth White, CC BY-SA 2.0

Ссылка на основную публикацию
Adblock
detector